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Abstract

Master of Science

Development of an Electromagnetic-Based Haptic Interface for Rendering of Volumetric

Shapes in Mid-Air

by Mina Maged Micheal

Mid-Air haptics is an active area of research owing to its potential impact on augmented/virtual

reality. In this work, an electromagnetic-based haptic interface (EHI) is developed to gener-

ate controlled magnetic forces necessary for rendering three-dimensional (3D) virtual objects

in mid-air. A model of the magnetic forces exerted on a dipole attached to a wearable �nger

splint is developed to optimize the design of the electromagnetic coils. An impedance-type

haptic rendering algorithm, utilizing position feedback is designed. This rendering algo-

rithm capitalizes on minimizing the error between the exerted magnetic force and the de-

sired constraint force of a virtual 3D object based on the position of the �nger. A magnetic

localization system is developed to track the �nger of the user within the EHI workspace.

The position of the magnetic dipole is estimated using two identical arrays of 3D magnetic

�eld sensors to eliminate the magnetic �eld generated by the EHI. Measurements acquired

using these arrays are used to estimate the position of the magnetic dipole by an arti�cial

neural network (ANN). This network maps the �eld readings to the position of the mag-

netic dipole. The proposed magnetic localization system is experimentally validated under

four different magnetic �elds generated by the EHI. These cases are likely to be encountered

during the haptic rendering of virtual shapes. In the absence of the EHI �eld, the mean ab-

solute position error (MAE) was found to be 0.80 � 0.30 mm (n = 125). Static and sinusoidal

magnetic �elds are applied, and the MAEs are 1.26 � 0.43 mm (n = 125) and 0.91� 0.33 mm

(n = 125), respectively. A random time-varying magnetic �eld is applied, and the MAE is

0.86 � 0.33 mm (n = 125). Our statistical analysis shows that the repeatability of the mag-

netic localization system is acceptable regardless of the �eld generated by the EHI, at a 95%

con�dence level. To investigate the in�uence of incorporating position feedback and test the

ability of the EHI to render virtual objects, we conducted a comparative study for the same

group of participants with and without position feedback. Our experimental results show

that rendering the virtual objects utilizing position feedback enables participants to achieve

a success rate of 66.8� 15% (n = 160) in distinguishing between the geometry of four 3D

virtual objects. This rate is decreased to 55.1� 15.8% (n = 160) without position feedback.

Statistical analysis shows evidence to conclude that the mean success rate for using position

feedback to render virtual objects is greater than rendering objects in the absence of position

feedback.
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Chapter 1

Introduction

1.1 Motivation

There has been considerable progress in the �eld of augmented/virtual reality (AR/VR)

technologies owing to their potential in several applications such as medical simulation

training, education, and the video game industry (Otaduy and Lin, 2005). Virtual and

augmented reality technologies allow synthetic computer-generated content to be superim-

posed onto the real world delivering immersive visualization of virtual content in a mixed-

reality environment. This technology gained immense popularity in recent years owing

to its various applications ranging from entertainment, education, and manufacturing to

training simulators and has become increasingly relevant to the medical and surgical �eld

[Bermejo and Hui, 2017a]. A basic feature for any of these applications is to provide the

operator with the ability to interact and explore virtual objects with minimal contact and

interaction. However, augmented reality lacks realism and expressively compared to tradi-

tional physical means which involves the human sense of touch.

When interacting with real-world objects humans receive a rich stream of tactile infor-

mation. This information enables us to perceive the objects using our sense of touch with

near to 100% accuracy (Martinez et al., 2019). Our human nervous system is responsible for

the two primary types of sensation: kinesthetic and cutaneous. Kinesthetic systems employ

receptors located in our muscles, tendons, and joints for the sensing of forces and displace-

ments. When holding an object in your hand, kinesthetic feedback tells your brain the ap-

proximate size, weight, and orientation of the object relative to your body i.e. it gives the

physical world around us the right dimension. Cutaneous or tactile feedback is responsible

for stimulating the receptors located on the skin to feel vibrations, pressure, temperature,

and the texture of any object [Hannaford and Okamura, 2016]. The science of experiencing

and creating touch sensations in human operators is called Haptics. The term 'haptic' is

from the Greek word 'haptesthai', meaning 'to touch', and is used to describe something

relating to or based on the sense of touch.

A major example driving much of today's haptic virtual environment research is medical

training simulators which gained much research attention as an alternative solution for the

traditional training methods used in medical schools including tissue phantoms, animals,

and corpses [Coles, Meglan, and John, 2011] and [Li et al., 2014]. Incorporating haptic tech-

nology into Virtual/Augmented reality medical simulators plays a crucial role in enhancing

training realism in procedures such as stitching, needle insertion, endoscopy, laparoscopy,



2 Chapter 1. Introduction

and palpation [Escobar-Castillejos et al., 2016]. For instance, surgeons manually palpate the

area of interest with their �ngers during normal medical assessments or open surgeries to

detect abnormalities or tumors using their sense of touch, as tissues with possible tumors

are stiffer than those of the surroundings. Surgeons could be trained to distinguish between

healthy tissues and tumors by perceiving their stiffness using the haptic interface while

wearing the AR headset.

1.2 Literature Review

1.2.1 Robotic-based Kinesthetic Haptic Devices

Numerous research groups have utilized robotic-based kinesthetic haptic devices in sev-

eral applications such as medical simulation training, education, and the entertainment in-

dustry. The most widely used haptic devices are Touch™, Phantom ®Premium TM from 3D

Systems Inc., and Falcon from Novint Technologies Inc. For instance, several researchers

developed haptic palpation simulators. Ullrich and Kuhlen [Ullrich and Kuhlen, 2012] used

two Touch TM devices (formerly Phantom Omni) to develop a medical simulator to help doc-

tors in palpation during surgeries, They modi�ed the end-effector of the device by adding a

lightweight pad for more realistic palpation tasks. Participant study results showed an aver-

age acceptance of the simulator performance, however, they reported that the pad modi�ca-

tion is a strong improvement over the default stylus. Palmerius et al. [Palmerius et al., 2011]

have introduced the method of acquiring haptic palpation data from a stiffness map con-

structed through an elastic imaging modality known as elastography. The authors adopted

a Touch XTM device for the haptic feedback in their prototype implementation. Mechanical

haptic devices used in the suffer from inherent inner friction, a certain degree of inertia as

well as limited workspace the device stylus provides which is inadequate for medical haptic

rendering.

1.2.2 Mid-Air Haptic Devices

Mid-air haptics is an emerging technology that can enhance interaction in virtual environ-

ments by providing haptic perception in mid-air. This technology aims to convey haptic

stimuli at a distance without -in any way- instrumenting the user. Therefore, midair de-

vices are more suitable for AR/VR ecosystems [Bermejo and Hui, 2017b]. Several research

groups have developed mid-air haptic devices based on forces generated at a distance using

acoustic radiation pressure [Iwamoto et al., 2008], and air pressure [Suzuki and Kobayashi,

2005]. Hoshi et al. have integrated visual feedback and force sensing using a hologram and

four ultrasonic transducers, respectively [Hoshi, Abe, and Shinoda, 2009]. Long et al. have

also developed an ultrasound-based haptic feedback method with an array of ultrasonic

transducers [Long et al., 2014a]. Spelmezanet al. have developed a wearable ultrasound-

based haptic device using an array of transducers attached to the user�s hand [Spelmezan,

González, and Subramanian, 2016]. The usefulness of the ultrasound-based technique is

limited by the following two major drawbacks [Arafsha et al., 2015]: �rst, the generated
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force is relatively low (less than 29 mN), and hence its capability to render deformable bod-

ies is limited; second, ultrasound waves require relatively high power (approximately 100

mW/cm2 to exert force of 428 mN) that can cause negative side-effects to skin tissue. Sodhi

et al. have proposed a mid-air haptic device based on an air-jet technique. This method

enables the user to perceive the air pressure as a force [Sodhi et al., 2013]. Suzuki et al.

have proposed a force feedback technique based on air pressure for rendering volumetric

shapes in mid-air [Suzuki and Kobayashi, 2005]. A combination of laser- and ultrasonic-

based approaches have been proposed by Lee et al., 2016 and Ochiai et al., 2016. These

air-jet systems have some disadvantages such as their low spatial resolution, relatively large

size, and relatively slow response [Arafsha et al., 2015], [Brink et al., 2014]. These prob-

lems can be partially overcome by rendering volumetric shapes using computer-controlled

magnetic forces on a magnetic dipole [Zhang, Dong, and El Saddik, 2016].

1.2.3 Magnetic Haptic Devices

In recent years, electromagnetic-based haptic interfaces (EHIs) have obtained considerable

attention due to their effectiveness in medical simulation applications [Hu et al., 2006]. The

EHIs are classi�ed into two groups: Lorentz-forces interfaces [Berkelman, Butler, and Hollis,

1996], [Berkelman and Hollis, 2000], [Salcudean and Vlaar, 1997] and untethered interfaces

[Berkelman, Miyasaka, and Anderson, 2012] and [Berkelman, Bozlee, and Miyasaka, 2013];

the latter is achieved using two methods: �rst, a stylus-based type where the haptic sen-

sation is achieved via a magnetic force exerted on the dipole of an interaction stylus [Tong

et al., 2018] and second, a wearable-based type where the magnetic dipole is attached to

a wearable device [Zhang, Dong, and El Saddik, 2016]. The second type produces static

magnetic forces regardless of the position of the operator. The magnetic force and torque

exerted on a dipole can be precisely controlled to render three-dimensional (3D) virtual ob-

jects. Zhang et al. have proposed a magnetic system for rendering volumetric shapes in

mid-air. They have designed and simulated the rendering process of virtual shapes using

the magnetic forces exerted on a magnetic dipole without position feedback [Zhang, Dong,

and El Saddik, 2016]. Adel et al, have demonstrated the ability to generate controlled mag-

netic forces on a wearable haptic device (wearable orthopedic �nger splint) without position

feedback [Adel et al., 2017]. The implication of using this technique is that it requires a rela-

tively large number of coils to render all features of complex objects. Moreover. any move-

ment away from a pre-de�ned constraint surface of the 3D virtual object would decrease

the ability of the operator to perceive its features, and as a consequence, the ability of the

participants to distinguish between different geometries has not been statistically signi�cant

[Adel et al., 2018].

1.3 Objectives

In this thesis, an electromagnetic-based haptic device is developed for rendering 3D virtual

objects. An impedance-type haptic rendering algorithm using position feedback is designed
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and achieves the following:

• Modeling of the force exerted on a dipole under the in�uence of a controlled external

magnetic �eld.

• Optimization of the parameters of the electromagnetic coils to obtain force in excess of

2 N at a height of 3 cm

• Development of a magnetic localization system that does not depend on the pre-

calculated magnetic �eld map of the EHI.

• Development of an impedance-type haptic rendering algorithm for rendering 3D vir-

tual objects.

• Experimental investigation on the ability of participants to differentiate between 3D

virtual objects.

1.4 Thesis Organization

The remainder of this thesis is organized as follows; Chapter 2 provides modeling of the

magnetic force exerted on a dipole attached to a �nger splint and the design of an electro-

magnetic haptic interface. The �nger localization system and the localization algorithm are

presented in Chapter 3. Chapter 4 presents the haptic rendering algorithm and the exper-

imental investigation of the ability of the participants to differentiate between 3D virtual

objects. Finally, Chapter 5 concludes the work and provides future directions.
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Chapter 2

Electromagnetic-Based Haptic Device

The electromagnetic haptic device should be able to provide magnetic forces for render-

ing the required shape on the user's �ngertip at any position within its workspace. The

electromagnetic-based haptic device consists of four fundamental hardware components

• An array of nine electromagnetic coils

• Wearable user interface

• Hand-tracking system

• Current control unit

The electromagnetic coils are used to provide controlled magnetic forces on a wearable

user interface with a single embedded permanent magnet. The position of the user's �n-

ger is continuously tracked to determine the required surface constrain forces needed to

render a shape. An impedance-type haptic rendering algorithm -which will be presented

later- provides control signals via the current control unit to the electromagnetic coils which

maps the signals from the algorithm into magnetic forces. These forces render a 3D virtual

environment for an operator to perceive.

2.1 Magnetic Modeling

Magnetic haptic rendering of 3D virtual objects is achieved by applying magnetic forces to

a single dipole moment ( m 2 R3� 1) attached to a wearable �nger splint. The objective is

to design an electromagnetic-based haptic device capable of generating the necessary mag-

netic �elds B(p) 2 R3� 1 and �eld gradients to deliver controlled magnetic forces for haptic

feedback. To accomplish this, it is essential to model the magnetic force acting on a single

dipole moment when it is exposed to a controlled magnetic �eld. Let p 2 R3� 1 be the po-

sition of the permanent magnet attached to the �nger splint. If a controlled magnetic �eld

is applied using a con�guration of a planar array of n-electromagnetic coils then a magnetic

force (F 2 R3� 1) is generated and is given by

F = r (B(p) � m), (2.1)
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