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Abstract

Magnetically guided untethered devices are used in a variety of medical applica-
tions. These devices are typically powered by onboard battery units. Instead, hydro-
gen fuel cells are a promising alternative power source for such small-scale devices
as they rely on a sustainable fuel, and do not require frequent charging or replace-
ment. They function as electric power sources by utilising the electrochemical re-
dox reaction of hydrogen and oxygen, using a solid-state proton exchange (polymer
electrolyte) membrane (PEM).

A key first step towards the deployment of fuel cells in medical devices is to under-
stand the effect of reducing the electrochemically active area of fuel cells to gain
insights into the challenges of downscaling such devices. This thesis investigates
the performance of PEM fuel cells (PEMFCs) when the active area is reduced, and
when the fuel cell is supplied with reactants at different flow rates and with oxygen
from air.

PEMFCs with three different active areas of electrodes, 3.5�3.5, 2.7�2.7, and
1.6�1.6 [cm2] were designed, fabricated, and electrochemically characterised us-
ing a potentiostat. A maximum fuel cell output power of 0.3, 0.09, and 0.03 [W]
(maximum power density of 0.0245, 0.0123, and 0.0117 [W.cm�2]) was observed
respectively. Mathematical modelling of the PEMFC was done to simulate the fuel
cell response and to get insights into the activation kinetics which is one of the elec-
trochemical aspects of a fuel cell. In the context of small-scale magnetic actuation,
the smallest PEMFC with an active area of 1.6�1.6 cm2 was tested with an inductor
coil (rated 130 mA, 150 mH, 8 
). The resistive behavior of the coil was captured at
a power of 0.0277 W (0.0108 W.cm�2). The challenges and recommendations for
using PEMFC as power sources are presented.

Keywords: PEMFC, active area, activation overpotential, Open Circuit Voltage
(OCV), reactant flow rates, PEM electrolyzer, PEMFC modelling
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Chapter 1

Introduction

Untethered devices (UDs) have been used in medical applications such as surgical

operations, precise drug delivery, and endoscopic procedures. These devices are

actuated to manoeuvre through a bio-�uid to carry out various tasks. The actuation

methods include ultrasound [1], [2], external magnetic �elds [3], radio frequency

signals [4], and light [5]–[7].

Magnetically actuated untethered devices (UMDs) use magnetic torque to move in

the bio-�uid [8]. The magnetic torque is obtained as a cross product of magnetic

dipole moment and magnetic �eld. The sources of dipole moment and magnetic

�eld could be a permanent magnet or a current-carrying inductor coil. The magnetic

dipole moment is usually generated inside the UMD and the magnetic �eld is applied

externally (Fig. 1.1).

Figure 1.1: An illustration of magnetic torque to actuate (move) a device. The mag-

netic torque is a product of magnetic dipole moment produced inside

the device and an external magnetic �eld.

There are two ways to obtain the magnetic torque. The most commonly adopted

approach for actuating a UMD is to use an onboard stationary magnetic element,

1



CHAPTER 1. INTRODUCTION 2

such as a permanent magnet as the source of static dipole moment. An external

dynamic magnetic �eld is provided by inductor coils or magnets attached to a moving

robot [9], [10]. This external magnetic �eld is changed to manipulate the position and

orientation of the UMD.

On the other hand, the second approach accomplishes magnetic actuation by gen-

erating a dynamic magnetic dipole moment inside the UMD. The dynamic magnetic

dipole moment is created by passing a time-varying (dynamic) current through an

inductor coil inside the UMD. The UMD's displacement and orientation are manipu-

lated by altering the magnetic dipole moment produced by the onboard coil while the

UMD is situated in a static external magnetic �eld [11]. The UMD requires an on-

board circuit, like an oscillator to generate dynamic current to the coil. This approach

eliminates the problem of interference between the external dynamic magnetic �eld

source and other medical equipment in the vicinity, thereby reducing the complexity

of external control. Furthermore, an onboard circuit provides room to integrate differ-

ent sensors that could be used for diagnostics [7], which is not possible if the UMD

only had a stationary magnetic element controlled by an external dynamic source

as seen in the �rst approach.

Given that this approach has been less explored, this thesis work uses the second

idea as a motivation to have an onboard circuit to drive a coil dynamically for a UMD.

When current I is passed through an inductor coil with nL number of windings and

radius rL , the magnetic moment m generated by the coil is given as follows,

m = �n L Ir 2
L : (1.1)

When the coil is placed with its axis perpendicular to an external magnetic �eld Bext ,

a magnetic torque � is generated,

� = m � Bext : (1.2)

A schematic representation is illustrated in Fig. 1.2.

PEM fuel cells as onboard power sources

Untethered devices (UDs) are often powered by onboard batteries that require

recharging or replacement, which limits the operating time. This challenge can be

addressed by using an energy harvester that either actuates the UD based on ex-

ternal sources like an external magnetic �eld [9] or derives energy from the environ-

ment like photovoltaic UDs [6].
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