DEFINITIONS: Let $Q = \bar{x}^T A x$

1. Q (or A) is **positive definite** iff: $\langle x, A x \rangle > 0$ for all $x \neq 0$.
2. Q (or A) is **positive semidefinite** if: $\langle x, A x \rangle \geq 0$ for all $x \neq 0$.
3. Q (or A) is **negative definite** iff: $\langle x, A x \rangle < 0$ for all $x \neq 0$.
4. Q (or A) is **negative semidefinite** if: $\langle x, A x \rangle \leq 0$ for all $x \neq 0$.
5. Q (or A) is **indefinite** if: $\langle x, A x \rangle > 0$ for some $x \neq 0$, and $\langle x, A x \rangle < 0$ for other $x \neq 0$.

Tests for definiteness of matrix A in terms of its eigenvalues λ_i:

Matrix A is . . .

<table>
<thead>
<tr>
<th></th>
<th>If the real parts of eigenvalues λ_i of A are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Positive definite</td>
<td>All $>$ 0</td>
</tr>
<tr>
<td>2. Positive semidefinite</td>
<td>All \geq 0</td>
</tr>
<tr>
<td>3. Negative definite</td>
<td>All $<$ 0</td>
</tr>
<tr>
<td>4. Negative semidefinite</td>
<td>All \leq 0</td>
</tr>
<tr>
<td>5. Indefinite</td>
<td>Some Re(λ_i) $>$ 0, some Re(λ_i) $<$ 0.</td>
</tr>
</tbody>
</table>

There are also other tests involving leading principal minors.
We need to consider functions of matrices before we can solve the state equations in time domain.

Applying a function $f(A)$ to a matrix A is NOT the same thing as applying the function to the matrix entries element-by-element.

First, define matrix powers:

$$AA = A^2, \ldots \text{ etc.}$$

$$A^0 = I$$

$$A^m A^n = A^{m+n}$$

$$(A^m)^n = A^{mn}$$

$$(A^{-1})^n = A^{-n}$$
Matrix Polynomials:

Matrix Form

\[P(A) = c_m A^m + \cdots + c_1 A + c_0 I \]
\[P(A) = c (A - I a_1) \cdots (A - I a_m) \]

Scalar Form

\[P(x) = c_m x^m + \cdots + c_1 x + c_0 \]
\[P(x) = c (x - a_1) \cdots (x - a_m) \]

Convergence of Polynomial Series:

Theorem: Let \(A \) be an \(n \times n \) matrix whose eigenvalues are \(\lambda_i \). If the infinite series

\[\sigma(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k + \cdots = \sum_{i=1}^{\infty} a_k x^k \]

converges for all \(x = \lambda_i \), then \ldots
... the series

$$\sigma(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_k A^k + \cdots = \sum_{i=1}^{\infty} a_k A^k$$

converges. This will be important when we want the Taylor series expansions of a function of a matrix.

Theorem: If $f(z)$ is any function (not necessarily a polynomial) whose derivative exists for all z within a circle of the complex plane in which all eigenvalues of matrix A lie, then $f(A)$ can be written as a convergent power series.
Example: Find \(\frac{d}{dt} \left(e^{At} \right) \)

\[e^{At} = I + At + \frac{A^2 t^2}{2!} + \cdots \]

\[
\frac{de^{At}}{dt} = A + \frac{2 A^2 t}{2!} + \frac{3 A^3 t^2}{3!} + \cdots
\]

\[= A \left[I + At + \frac{A^2 t^2}{2!} + \cdots \right] \]

\[= Ae^{At} (= e^{At} A) \]

Also note that:

\[\sin(A) = A - \frac{A^3}{3!} + \frac{A^5}{5!} - \cdots \]

\[\cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \cdots \]

\[\ldots \text{ etc., same as for expansions of scalar functions.} \]
A much more useful theorem:

Theorem: Let \(g(\lambda) \) be a polynomial of degree \(n-1 \) and \(f(\lambda) \) be ANY function of \(\lambda \). If \(f(\lambda) = g(\lambda) \) for all eigenvalues of \(A \) ("on the spectrum of \(A \)"), then \(f(A) = g(A) \) (for \(A \) itself.)

Implication: We can define the matrix-version of a non-polynomial scalar function using a matrix polynomial, if the two functions agree on the spectrum of the matrix!

Example: Let
\[
A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}
\]

"spectrum of \(A" = \{\text{eigenvalues}(A)\} = \sigma(A) = \{1, 2\}
Let \(g(\lambda) \) be our n-1 order polynomial:
\[
g(\lambda) = \alpha_0 + \alpha_1 \lambda
\]

Now suppose we are asked to find \(f(A) = A^5 \)

\[
f(\lambda) = \lambda^5
\]

So we set \(f(\lambda) = g(\lambda) \) for \(\lambda = \{1,2\} \)

find \(\alpha_0, \alpha_1 \) \[
\begin{align*}
1^5 &= \alpha_0 + \alpha_1 \cdot 1 \\
2^5 &= 32 = \alpha_0 + \alpha_1 \cdot 2
\end{align*}
\]

Solving, \(\alpha_0 = -30, \quad \alpha_1 = 31 \)

Using this result:

\[
A^5 = -30I + 31A = \begin{bmatrix} 1 & 62 \\ 0 & 32 \end{bmatrix}
\]

Alternative way of calculating A

NOTE: If we had repeated eigenvalues, these equations would not be independent. We could instead use the equation AND its derivatives.
Example: Let \(A = \begin{bmatrix} -3 & 1 \\ 0 & -2 \end{bmatrix} \) Find a \textit{closed-form} solution for \(\sin(A) \). (Can't use Taylor series) \(\lambda_1 = -3, \lambda_2 = -2 \) (goes on forever)

This is similar to an earlier example. Because \(n=2 \), any analytic function of \(A \) can be written as a \textit{first} order matrix polynomial, so

\[
\sin(A) = \alpha_0 I + \alpha_1 A
\]

Evaluate this expression on the spectrum of \(A \):

\[
\begin{align*}
\sin(-3) &= \alpha_0 + \alpha_1(-3) \\
\sin(-2) &= \alpha_0 + \alpha_1(-2)
\end{align*}
\]

\[
\begin{pmatrix}
\alpha_1 = -0.768 \\
\alpha_0 = -2.45
\end{pmatrix}
\]

Solving,

\[
\sin(A) = \begin{bmatrix} \sin(-3) & \sin(-2) - \sin(-3) \\ 0 & \sin(-2) \end{bmatrix} = \alpha_0 I + \alpha_1 A
\]
If A had repeated eigenvalues, the two equations

\[
\sin(-3) = \alpha_0 + \alpha_1(-3) \\
\sin(-2) = \alpha_0 + \alpha_1(-2)
\]

would be linearly dependent and have no unique solution. Then we could use one of them and use a derivative for the other:

\[
\frac{d}{d\lambda} \left[\sin(\lambda) = \alpha_0 + \alpha_1\lambda \right] \\
\text{so} \\
\cos(\lambda) = \alpha_1
\]

This would be the second independent equation.
Cayley-Hamilton Theorem: Let a system have characteristic polynomial

\[
|A - \lambda I| = \phi(\lambda)
\]

Then

\[
\phi(A) = 0
\]

That is, every matrix satisfies its own characteristic polynomial.

This theorem, together with the previous one, imply that we never need to consider polynomials of a matrix of order higher than \(n-1 \) (!!)
Example: (Reduction of matrix polynomials to degree n-1 or less). Let

\[A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \]

and find

\[P(A) = A^4 + 3A^3 + 2A^2 + A + I. \]

\[\Delta(\lambda) = \lambda^2 - 5\lambda + 5 = 0 \]

So from Cayley-Hamilton,

\[A^4 = A^2 A^2 = (5A - 5I)^2 = 25A^2 - 50A + 25I = 25(5A - 5I) - 50A + 25I \]

\[A^3 = A^2 A = (5A - 5I)A = 5A^2 - 5A = 5(5A - 5I) - 5A \]

\[A^2 = 5A - 5I \]

Now \(P(A) \) will contain no powers of \(A \) higher than 1.
Some examples of what these theorems allow us to do:

Example: Suppose the characteristic polynomial of a system is

$$\phi(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0 = 0$$

so

$$\phi(A) = A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I = 0$$

Noting that c_0 is equal to the product of all the eigenvalues, we know it is nonzero iff matrix A is non-singular (no zero eigenvalues), or A is invertible. Multiply the above equation through by A^{-1} to get:

$$A^{n-1} + c_{n-1}A^{n-2} + \cdots + c_1I + c_0A^{-1} = 0$$

Solving

$$A^{-1} = -\frac{1}{c_0} \left[A^{n-1} + c_{n-1}A^{n-2} + \cdots + c_1I \right]$$

Easy way for computer to find inverse
Definition: The minimal polynomial of a square matrix A is the lowest degree monic polynomial $\phi_m(\lambda)$ which satisfies

$$\phi_m(A) = 0$$

Being minimal affects only powers of repeated terms in characteristic polynomials, for example, if

$$\phi(\lambda) = (\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_p)^{m_p},$$

$$\phi_m(\lambda) = (\lambda - \lambda_1)^{\eta_1}(\lambda - \lambda_2)^{\eta_2} \cdots (\lambda - \lambda_p)^{\eta_p}$$

where

$$\eta_i \leq m_i$$

Note that η_i is not necessarily 1, but is rather the *index* of the eigenvalue λ_i.

How many ones in super diagonal of Jordan Form
Another important example of this technique will be in the computation of the matrix exponential:

\[e^{At} \]

We will see in the next chapter how important this matrix will be in the solution of the state variable equations for a system.
Solutions to State Equations

We know how to solve scalar linear differential equations, but what about the state-space equations:

\[
\dot{x} = Ax + Bu, \quad x(t_0) = x_0
\]

\[
y = Cx + Du
\]

Actually, we need only to consider \(\dot{x} = Ax + Bu \) because finding \(y \) will then be a simple matter of matrix multiplication.

Recall the technique of *integrating factor* in the solution of linear differential equations:
\[\dot{x} - Ax = Bu \]

Multiplying this equation by \(e^{-At} \) will result in the left-hand side becoming a "perfect" differential:

\[e^{-At}[\dot{x} - Ax = Bu] \]
\[e^{-At} \dot{x} - e^{-At} Ax = e^{-At} Bu \]
\[\frac{d}{dt}[e^{-At} x(t)] = e^{-At} Bu(t) \]

Now multiply both sides by \(dt \) and integrate over a dummy variable \(\tau \) from \(t_0 \) to \(t \).

\[e^{-At} x(t) - e^{-At_0} x(t_0) = \int_{t_0}^{t} e^{-A\tau} Bu(\tau)d\tau \]
\[e^{-At} x(t) - e^{-At_0} x(t_0) = \int_{t_0}^{t} e^{-A\tau} Bu(\tau) d\tau \]

Move initial condition term to RHS and multiply through by \(e^{At} \)

\[x(t) = e^{At} e^{-At_0} x(t_0) + e^{At} \int_{t_0}^{t} e^{-A\tau} Bu(\tau) d\tau \]

\[= e^{A(t-t_0)} x(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau \]

Note that if matrix \(B \) were a function of time, this would become simply

\[x(t) = e^{A(t-t_0)} x(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} B(\tau) u(\tau) d\tau \]

(but if \(A \) were a function of time, we run into bigger problems.)
If we wanted to compute $y(t)$, we would simply get:

$$y(t) = Ce^{A(t-t_0)}x(t_0) + C \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

Again, C and D could be functions of time without complicating matters too much. If A is time-varying, we must be more careful choosing a proper integrating factor. The matrix exponential will no longer work.

Again, the importance of the matrix exponential e^{At} arises. We'll summarize the several ways to compute it shortly.
System modes and modal decompositions:

This is a very powerful representation of a system's solutions, used widely in large-scale systems and infinite-dimensional systems, which are often represented by partial differential equations rather than ordinary differential equations. It underscores the importance of a basis of the state-space.

Let the set \(\{\xi_i\} \) be the set of \(n \) linearly independent eigenvectors, including, if necessary, generalized eigenvectors, corresponding to eigenvalues \(\lambda_i \) of the constant matrix \(A \). Because this set forms a basis of the state-space, we can write

\[
 x(t) = \sum_{i=1}^{n} q_i(t)\xi_i
\]

\(q_i(t) \) denotes the scalar coefficients, \(\xi_i \) denotes the eigenvectors.
\[x(t) = \sum_{i=1}^{n} q_i(t) \xi_i \]

For some time-varying coefficients

\[q_i(t), \quad i = 1, \ldots, n \]

We can easily do the same for the term \(B(t)u(t) \)

\[B(t)u(t) = \sum_{i=1}^{n} \beta_i(t) \xi_i \]

\(\beta_i(t) \) denotes the scalar coefficients, \(\xi_i \) eigenvectors

Substituting these expansions into the state-equations

\[\dot{x} = Ax + Bu \]

Gives
\[
\sum_{i=1}^{n} \dot{q}_i(t)\xi_i = \sum_{i=1}^{n} q_i(t)A\xi_i + \sum_{i=1}^{n} \beta_i(t)\xi_i
\]

We have implicitly assumed in this step that we have \(n\) linearly independent eigenvectors. If this is not the case, relatively minor complications arise.

Re-arranging,

\[
\sum_{i=1}^{n} (\dot{q}_i(t) - q_i(t)A - \beta_i(t))\xi_i = 0
\]

These coefficients must all be zero, so

\[
\dot{q}_i(t) = q_i(t)\lambda_i + \beta_i(t) \quad \text{for} \quad i = 1, \ldots, n
\]

Recall \(A\xi_i = \lambda_i\xi_i\) \(\Rightarrow\) Eigenvalue/Eigenvector Problem
\[\dot{q}_i(t) = q_i(t)\lambda_i + \beta_i(t) \quad \text{for} \quad i = 1, \ldots, n \]

This is a set of \textit{n de-coupled} equations (if we had used any generalized eigenvectors, some would still be coupled, but only to one other equation).

The terms \(q_i(t)\xi_i \) are called \textit{system modes}, and are equivalent to the "new" state variables \(\bar{x}(t) \) that we obtained in the past example where we "diagonalized" the system using the modal matrix. Recall that if \(M \) is the modal matrix, we can define new variables.

\[x = Mq \]

such that

\[\dot{q} = M^{-1}AMq + M^{-1}Bu \]

\[y = CMq + Du \]
\[
\dot{q} = M^{-1} AMq + M^{-1} Bu \\
y = CMq + Du
\]

where \(M^{-1} AM = J \) is the Jordan form of the A-matrix (diagonal if there are n eigenvectors).

Because these equations are decoupled, the solutions to the state equations are particularly simple. We can find the solutions \(q(t) \) and then change them back to the original variables \(x(t) \) by un-doing the transformation afterward. That is,

\[
J = M^{-1} AM \\
q(t) = e^{J(t-t_0)}q(t_0) + \int_{t_0}^{t} e^{J(t-\tau)} M^{-1} B(\tau)u(\tau)d\tau, q(t_0) = M^{-1}x(t_0)
\]

after which

\[
x(t) = M q(t)
\]
In **diagonal** form, the computation of e^{Jt} is particularly easy:

$$
\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_n
\end{bmatrix} ^t =
\begin{bmatrix}
\lambda_1 t & 0 \\
0 & \lambda_n t
\end{bmatrix}
$$

and

$$
e^{A^t} = M e^{Jt} M^{-1}
$$

Whenever two matrices A and J are similar, we can compute our function of J and perform the reverse-similarity transform afterward. That is,

$$
\text{if } J = M^{-1} A M,
\Rightarrow f(A) = M f(J) M^{-1} \quad \text{and} \quad f(J) = M^{-1} f(A) M
$$

Note that \hat{A} and A are similar if

$$
\hat{A} = M^{-1} A M \quad \text{for some orthonormal } M$$
Often in large-scale or infinite-dimensional systems, some modes are negligible and are discarded after modal expansion, thus reducing the size of the system. For example, when a beam vibrates, we have an infinite number of terms in a series expansion of its displacement function, but only the first few (2 - 5) may dominate.