Sliding mode control

1) New title: Sliding mode control
2) Nonlinear control strategies based on sliding mode are used to deal with parameter and model uncertainties.
3) In sliding mode control, a Lyapunov approach is used to keep the nonlinear system under control.
4) In sliding mode control, a higher order system is transformed into a lower order system.
5) Reasons for modeling uncertainties:

- Actual uncertainty about the plant (unknown parameters)
- Simplified model design (purposeful simplification)

6) Types of modeling uncertainties:

- Structured (parametric)
- Unstructured (unmodeled dynamics, inaccuracy on the system order)

7) Robust control: An approach to deal with modeling uncertainties.
8) A robust controller is usually composed of a nominal part (a feedback controller) and a corrective term (dealing with model uncertainty.)
9) Sliding mode control is a robust control strategy.
10) In sliding mode control a switching control law is used.
11) The switching law is used to drive the state trajectory onto a prespecified surface.
12) Terminology: This surface is called a switching surface, sliding surface or sliding manifold.
13) In many cases this surface is a line (for second order SISO systems).
14) Ideally, once intercepted, the sliding surface becomes positively invariant for system states. (System states slide along the sliding surface.)
15) Important task: Design of a switching control that will drive state trajectories to the sliding surface, and keep them on the sliding surface.
16) This is done by a Lyapunov approach.
17) In sliding mode control, the Lyapunov function is defined in terms of the sliding surface.
18) Consider the following single input nonlinear system:
$x^{(n)}=f(X, t)+b(X, t) u(t)$
$X(t)$: State vector
$u(t)$: Control input
x : Output state of interest. (The other states in X are higher order derivatives of x up to the order $(n-1)$.)
$f(X, t), b(X, t)$: Nonlinear functions.
19) $f(X, t)$ is not exactly known. The imprecision of our knowledge on $f(X, t)$ is upper bounded by a known continuous function of X.
20) $b(X, t)$ is not exactly known. $b(X, t)$ is of known sign. $b(X, t)$ is upper and lower bounded by known functions of X.
21) Control problem: We want that X tracks the time-varying state reference X_{d} in the presence of model imprecision on $f(X, t)$ and $b(X, t)$.
22) Define the sliding variable $s(t)$ as:

$$
\begin{equation*}
s(t)=\left(\frac{d}{d t}+\lambda\right)^{n-1} \widetilde{x}(t) \tag{2}
\end{equation*}
$$

λ : Strictly positive constant
$\widetilde{x}(t)=x(t)-x_{d}(t)$
$x_{d}(t)$: Desired output state
23) The sliding surface S is defined by equating the sliding variable to 0 :
$S \equiv\{\widetilde{X}: s(t)=0\}$
24) The system behavior on the sliding surface is called sliding mode or sliding regime.
25) Remark: The tracking problem for the n-dimensional state vector is replaced by a first-order stabilization problem for $s(t)$.
26) Since λ is positive, the error dynamics on the sliding line is Hurwitz and the tracking error decays to zero with a speed dictated by λ.

$$
0=s(t)=\left(\frac{d}{d t}+\lambda\right)^{n-1} \widetilde{x}(t)
$$

27) Moving s to zero can be achieved if the control u is designed in such a way that the following inequality holds:
$\frac{1}{2} \frac{d}{d t} s^{2} \leq-\eta|s|$
η : a positive constant. |

28) Question: With $\frac{1}{2} \frac{d}{d t} s^{2} \leq-\eta|s|$, if the initial states are off the sliding surface, how fast do they converge to the sliding surface?
29) Answer:

Suppose that the system state is not on the sliding surface.
Then $s \neq 0$.
Suppose that $s>0$.
$\left.\frac{1}{2} \frac{d}{d t} s^{2} \leq-\eta|s| . \Rightarrow s \dot{s} \leq-\eta| | s \right\rvert\,$.
$s>0 . \Rightarrow s=|s| . \Rightarrow \dot{s} \leq-\eta$.
Now integrate both sides of this equation:
$\int_{0}^{t_{\text {reach }}} \dot{s} d t \leq \int_{0}^{t_{\text {reach }}}-\eta d t$
$t_{\text {reach }}$: State reaching time to the sliding surface.
$\left.\Rightarrow s\right|_{0} ^{t_{\text {reach }}} \leq-\left.\eta t\right|_{0} ^{t_{\text {reach }}} . \Rightarrow s\left(t_{\text {reach }}\right)-s(0)=0-s(0) \leq-\eta\left(t_{\text {reach }}-0\right) \Rightarrow t_{\text {reach }} \leq \frac{s(0)}{\eta}$
If we start by the assumption that $s<0$. Then, a similar result will be obtained for the reaching time:
$t_{\text {reach }} \leq\left|\frac{s(0)}{\eta}\right|$.
30) Remark: Starting from any initial state error, the state error trajectories reach the sliding surface in a finite time less than $\left|\frac{s(0)}{\eta}\right|$ and then slide along the surface to the origin exponentially with a time constant $\frac{1}{\lambda}$.
31) Question: How should the control u be designed in order to achieve $\frac{1}{2} \frac{d}{d t} s^{2} \leq-\eta|s|$?
32) Consider the following second order system:

$$
\begin{equation*}
\ddot{x}(t)=f(X, t)+u(t) \tag{5}
\end{equation*}
$$

33) Let $\hat{f}(X, t)$ be an estimate for $f(X, t)$ with
$|\hat{f}(X, t)-f(X, t)| \leq F(X, t)$.
34) Define the sliding variable as
$s(t)=\left(\frac{d}{d t}+\lambda\right) \widetilde{x}=\dot{\tilde{x}}+\lambda \widetilde{x}$.
35) Differentiate the sliding variable:

$$
\begin{align*}
& \dot{s}(t)=\ddot{x}-\ddot{x}_{d}+\lambda \dot{\tilde{x}} . \tag{8}\\
& \Rightarrow \dot{s}(t)=f(X, t)+u(t)-\ddot{x}_{d}+\lambda \dot{\tilde{x}} . \tag{9}
\end{align*}
$$

36) Define the approximation control law

$$
\begin{equation*}
\hat{u}(t)=-\hat{f}(X, t)+\ddot{x}_{d}-\lambda \dot{\tilde{x}} . \tag{10}
\end{equation*}
$$

37) $\hat{u}(t)$ is designed to achieve $\dot{s}(t)=0$.
$\hat{u}(t)$ is the best estimate of "equivalent control".
Equivalent control: Control for keeping s at a constant value.
This constant value is 0 on the sliding line.
38) Remember the target reaching regime:
$\frac{1}{2} \frac{d}{d t}\left(s^{2}(t)\right) \leq-\eta|s(t)| \quad \quad \eta>0$
39) In order to achieve this regime with the existing uncertainty on $f(X, t)$, the
following control law is designed.

$$
\begin{align*}
& u(t)=\hat{u}(t)-k(X, t) \operatorname{sgn}(s(t)) \tag{12}\\
& k(X, t)=F(X, t)+\eta
\end{align*}
$$

40) How does this design for u achieve $\frac{1}{2} \frac{d}{d t}\left(s^{2}(t)\right) \leq-\eta|s(t)|$?
41) Answer:

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left(s^{2}(t)\right) & =\dot{s}(t) s(t) \\
& =\left(f(X, t)+u(t)-\ddot{x}_{d}+\lambda \dot{\tilde{x}}\right) s(t) \\
& =\left(f(X, t)+\hat{u}(t)-k(X, t) \operatorname{sgn}(s(t))-\ddot{x}_{d}+\lambda \dot{\widetilde{x}}\right) s(t) \\
& =\left(f(X, t)-\hat{f}(X, t)+\ddot{x}_{d}-\lambda \dot{\tilde{x}}-k(X, t) \operatorname{sgn}(s(t))-\ddot{x}_{d}+\lambda \dot{\tilde{x}}\right) s(t) \tag{13}\\
& =(f(X, t)-\hat{f}(X, t)-k(X, t) \operatorname{sgn}(s(t))) s(t) \\
& =(f(X, t)-\hat{f}(X, t)) s(t)-k(X, t)|s(t)| \\
& =(f(X, t)-\hat{f}(X, t)) s(t)-(F(X, t)+\eta)|s(t)| \leq-\eta|s(t)|
\end{align*}
$$

42) Consider the following more general second order system:
$\ddot{x}(t)=f(X, t)+b(X, t) u(t)$
$b(X, t)$ is bounded as: $0 \leq b_{\text {min }}(X, t) \leq b(X, t) \leq b_{\text {max }}(X, t)$
43) In the control design we can use the geometric mean of the lower and upper bounds can be used as the estimate for $b(X, t)$:
$\hat{b}(X, t)=\sqrt{b_{\text {min }}(X, t) b_{\text {max }}(X, t)}$
44) Let $\beta \equiv \sqrt{\frac{b_{\max }}{b_{\min }}}$. Then the bound can be expressed as $\beta^{-1} \leq \frac{\hat{b}}{b} \leq \beta$.
45) Question: How is that so? Assume $b \min =b$ then $b m a x=b$
46) Answer: $: \frac{\hat{b}}{b}=\frac{\sqrt{b_{\min } b_{\max }}}{b}=\frac{\sqrt{b_{\min }} \sqrt{b_{\max }}}{b}=\frac{\sqrt{b_{\min }} \sqrt{b_{\max }}}{\sqrt{b} \sqrt{b}} \leq \frac{\sqrt{b_{\max }}}{\sqrt{b}} \leq \frac{\sqrt{b_{\max }}}{\sqrt{b_{\min }}}=\beta$.

Similarly: $\frac{\hat{b}}{b}=\frac{\sqrt{b_{\min } b_{\max }}}{b}=\frac{\sqrt{b_{\min }} \sqrt{b_{\max }}}{b}=\frac{\sqrt{b_{\min }} \sqrt{b_{\max }}}{\sqrt{b} \sqrt{b}} \geq \frac{\sqrt{b_{\min }}}{\sqrt{b}} \geq \frac{\sqrt{b_{\min }}}{\sqrt{b_{\max }}}=\beta^{-1}$.
47) Remark: The control law

$$
\begin{equation*}
u(t)=(\hat{b}(X, t))^{-1}[\hat{u}(t)-k(X, t) \operatorname{sgn}(s(t))] \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
k(X, t) \geq \beta(X, t)(F(X, t)+\eta)+(\beta(X, t)-1)|\hat{u}(t)| \tag{16}
\end{equation*}
$$

satisfies the sliding condition

$$
\frac{1}{2} \frac{d}{d t}\left(s^{2}(t)\right) \leq-\eta|s(t)| .
$$

48) Remark: Ideal sliding mode requires infinite frequency switching. This is not possible. Therefore zigzag behavior is observed about the sliding line.
49) Definition: This behavior is called chattering.

50) Remark: In many cases chattering has to be eliminated for proper plant operation.
51) Chattering can be eliminated by smoothing the control in a narrow boundary layer around the sliding surface.

$$
\begin{equation*}
B=\{x:|s(\widetilde{x}, t)| \leq \phi\} \quad \phi>0 \tag{17}
\end{equation*}
$$

52) Terminology: ϕ is called the boundary layer thickness.
53) Definition: For a second order plant, the width of the boundary layer is as $\varepsilon=\frac{\phi}{\lambda}$.
54) Smoothing inside the boundary layer can be achieved by using the sat function in place of the sgn function in the control law.

55) Remark: The sat function is equivalent to $\frac{s}{\phi}$ inside the boundary layer.
56) Perfect tracking cannot be guaranteed but steady state tracking error less than the boundary layer width can be achieved.
