Sliding mode control
1) New title: Sliding mode control

2) Nonlinear control strategies based on sliding mode are used to deal with parameter and model uncertainties.

3) In sliding mode control, a Lyapunov approach is used to keep the nonlinear system under control.

4) In sliding mode control, a higher order system is transformed into a lower order system.

5) Reasons for modeling uncertainties:
 - Actual uncertainty about the plant (unknown parameters)
 - Simplified model design (purposeful simplification)

6) Types of modeling uncertainties:
 - Structured (parametric)
 - Unstructured (unmodeled dynamics, inaccuracy on the system order)
7) Robust control: An approach to deal with modeling uncertainties.

8) A robust controller is usually composed of a nominal part (a feedback controller) and a corrective term (dealing with model uncertainty.)

9) Sliding mode control is a robust control strategy.

10) In sliding mode control a switching control law is used.

11) The switching law is used to drive the state trajectory onto a prespecified surface.

12) Terminology: This surface is called a switching surface, sliding surface or sliding manifold.

13) In many cases this surface is a line (for second order SISO systems).

14) Ideally, once intercepted, the sliding surface becomes positively invariant for system states. (System states slide along the sliding surface.)
15) Important task: Design of a switching control that will drive state trajectories to the sliding surface, and keep them on the sliding surface.

16) This is done by a Lyapunov approach.

17) In sliding mode control, the Lyapunov function is defined in terms of the sliding surface.
18) Consider the following single input nonlinear system:
\[
x^{(n)} = f(X,t) + b(X,t)u(t)
\]
(1)

\(X(t)\): State vector
\(u(t)\): Control input
\(x\): Output state of interest. (The other states in \(X\) are higher order derivatives of \(x\) up to the order \((n-1)\).)
\(f(X,t)\), \(b(X,t)\): Nonlinear functions.

19) \(f(X,t)\) is not exactly known. The imprecision of our knowledge on \(f(X,t)\) is upper bounded by a known continuous function of \(X\).

20) \(b(X,t)\) is not exactly known. \(b(X,t)\) is of known sign. \(b(X,t)\) is upper and lower bounded by known functions of \(X\).

21) Control problem: We want that \(X\) tracks the time-varying state reference \(X_d\) in the presence of model imprecision on \(f(X,t)\) and \(b(X,t)\).
22) Define the sliding variable \(s(t) \) as:

\[
s(t) = \left(\frac{d}{dt} + \lambda \right)^{n-1} \tilde{x}(t)
\]

\(\lambda \): Strictly positive constant
\(\tilde{x}(t) = x(t) - x_d(t) \)
\(x_d(t) \): Desired output state

23) The sliding surface \(S \) is defined by equating the sliding variable to 0:

\[
S = \{ \tilde{X} : s(t) = 0 \}
\]

24) The system behavior on the sliding surface is called sliding mode or sliding regime.

25) Remark: The tracking problem for the \(n \)-dimensional state vector is replaced by a first-order stabilization problem for \(s(t) \).
26) Since \(\lambda \) is positive, the error dynamics on the sliding line is Hurwitz and the tracking error decays to zero with a speed dictated by \(\lambda \).

\[
0 = s(t) = \left(\frac{d}{dt} + \lambda \right)^{n-1} \tilde{x}(t)
\]

27) Moving \(s \) to zero can be achieved if the control \(u \) is designed in such a way that the following inequality holds:

\[
\frac{1}{2} \frac{d}{dt} s^2 \leq -\eta |s|
\] \hspace{1cm} (4)

\(\eta \): a positive constant.
28) Question: With $\frac{1}{2} \frac{d}{dt} s^2 \leq -\eta |s|$, if the initial states are off the sliding surface, how fast do they converge to the sliding surface?

29) Answer:
Suppose that the system state is not on the sliding surface. Then $s \neq 0$.
Suppose that $s > 0$.

$\frac{1}{2} \frac{d}{dt} s^2 \leq -\eta |s| \Rightarrow s \dot{s} \leq -\eta |s|.$

$s > 0 \Rightarrow s = |s| \Rightarrow \dot{s} \leq -\eta.$

Now integrate both sides of this equation:

$\int_{t_0}^{t_{reach}} \dot{s} dt \leq \int_{t_0}^{t_{reach}} -\eta dt$

t_{reach}: State reaching time to the sliding surface.

$\Rightarrow s\big|_{t_{reach}} - s\big|_{t_0} \leq -\eta (t_{reach} - t_0)$

$s(t_{reach}) - s(0) = 0 - s(0) \leq -\eta (t_{reach} - 0) \Rightarrow t_{reach} \leq \frac{s(0)}{\eta}$

If we start by the assumption that $s < 0$. Then, a similar result will be obtained for the reaching time:

$t_{reach} \leq \left| \frac{s(0)}{\eta} \right|$.
30) Remark: Starting from any initial state error, the state error trajectories reach the sliding surface in a finite time less than $\frac{|s(0)|}{\eta}$ and then slide along the surface to the origin exponentially with a time constant $\frac{1}{\lambda}$.
31) Question: How should the control u be designed in order to achieve
\[\frac{1}{2} \frac{d}{dt} s^2 \leq -\eta |s| ? \]

32) Consider the following second order system:
\[\ddot{x}(t) = f(X,t) + u(t) \]
(5)

33) Let $\hat{f}(X,t)$ be an estimate for $f(X,t)$ with
\[|\hat{f}(X,t) - f(X,t)| \leq F(X,t). \]
(6)

34) Define the sliding variable as
\[s(t) = \left(\frac{d}{dt} + \lambda \right) \tilde{x} = \dot{x} + \lambda \ddot{x}. \]

35) Differentiate the sliding variable:
\[\dot{s}(t) = \ddot{x} - \ddot{x}_d + \lambda \dddot{x}. \]
(8)
\[\Rightarrow \dot{s}(t) = f(X,t) + u(t) - \ddot{x}_d + \lambda \dddot{x}. \]
(9)
36) Define the approximation control law
\[\hat{u}(t) = -\hat{f}(X,t) + \dot{x}_d - \lambda \ddot{x}. \]
\[\text{(10)} \]

37) \(\hat{u}(t) \) is designed to achieve \(\dot{s}(t) = 0 \).
\(\hat{u}(t) \) is the best estimate of “equivalent control”.
Equivalent control: Control for keeping \(s \) at a constant value.
This constant value is 0 on the sliding line.

38) Remember the target reaching regime:
\[\frac{1}{2} \frac{d}{dt} \left(s^2(t) \right) \leq -\eta |s(t)| \quad \eta > 0 \]
\[\text{(11)} \]

39) In order to achieve this regime with the existing uncertainty on \(f(X,t) \), the following control law is designed.
\[u(t) = \hat{u}(t) - k(X,t) \text{sgn}(s(t)) \]
\[k(X,t) = F(X,t) + \eta \]
\[\text{(12)} \]
40) How does this design for \(u \) achieve \(\frac{1}{2} \frac{d}{dt} (s^2(t)) \leq -\eta |s(t)| \)?

41) Answer:

\[
\frac{1}{2} \frac{d}{dt} (s^2(t)) = \dot{s}(t)s(t)
\]

\[
= (f(X,t) + u(t) - \dot{x}_d + \lambda \ddot{x})s(t)
\]

\[
= (f(X,t) + \hat{u}(t) - k(X,t) \text{sgn}(s(t)) - \dot{x}_d + \lambda \ddot{x})s(t)
\]

\[
= (f(X,t) - \hat{f}(X,t) + \dot{x}_d - \lambda \ddot{x} - k(X,t) \text{sgn}(s(t)) - \dot{x}_d + \lambda \ddot{x})s(t)
\]

\[
= (f(X,t) - \hat{f}(X,t) - k(X,t) \text{sgn}(s(t)))s(t)
\]

\[
= (f(X,t) - \hat{f}(X,t))s(t) - k(X,t) |s(t)|
\]

\[
= (f(X,t) - \hat{f}(X,t))s(t) - (F(X,t) + \eta) |s(t)| \leq -\eta |s(t)|
\]
42) Consider the following more general second order system:
\[\ddot{x}(t) = f(X, t) + b(X, t)u(t) \]

\(b(X, t) \) is bounded as:
\[0 \leq b_{\min}(X, t) \leq b(X, t) \leq b_{\max}(X, t) \]

43) In the control design we can use the geometric mean of the lower and upper bounds can be used as the estimate for \(b(X, t) \):
\[\hat{b}(X, t) = \sqrt{b_{\min}(X, t) b_{\max}(X, t)} \]

44) Let \(\beta = \sqrt{\frac{b_{\max}}{b_{\min}}} \). Then the bound can be expressed as \(\beta^{-1} \leq \frac{\hat{b}}{b} \leq \beta \).

45) Question: How is that so? Assume \(b_{\min} = b \) then \(b_{\max} = b \)

46) Answer: \(\frac{\hat{b}}{b} = \frac{\sqrt{b_{\min} b_{\max}}}{b} = \frac{\sqrt{b_{\min}} \sqrt{b_{\max}}}{b} = \frac{\sqrt{b_{\min}} \sqrt{b_{\max}}}{\sqrt{b} \sqrt{b}} \leq \frac{b_{\max}}{\sqrt{b}} \leq \frac{b_{\max}}{\sqrt{b_{\min}}} = \beta \).

Similarly: \(\frac{\hat{b}}{b} = \frac{\sqrt{b_{\min} b_{\max}}}{b} = \frac{\sqrt{b_{\min}} \sqrt{b_{\max}}}{b} \geq \frac{\sqrt{b_{\min}} \sqrt{b_{\max}}}{\sqrt{b} \sqrt{b}} \geq \frac{\sqrt{b_{\min}}}{\sqrt{b_{\max}}} = \beta^{-1} \).
47) Remark: The control law

\[u(t) = \left(\hat{b}(X, t) \right)^{-1} \left[\hat{u}(t) - k(X, t) \, \text{sgn}(s(t)) \right] \]

(15)

with

\[k(X, t) \geq \beta(X, t)(F(X, t) + \eta) + (\beta(X, t) - 1) |\hat{u}(t)| \]

(16)

satisfies the sliding condition

\[\frac{1}{2} \frac{d}{dt} \left(s^2(t) \right) \leq -\eta |s(t)| \] .
48) Remark: Ideal sliding mode requires infinite frequency switching. This is not possible. Therefore zigzag behavior is observed about the sliding line.

49) Definition: This behavior is called chattering.
50) Remark: In many cases chattering has to be eliminated for proper plant operation.

51) Chattering can be eliminated by smoothing the control in a narrow boundary layer around the sliding surface.

\[B = \{ x : |s(\tilde{x}, t)| \leq \phi \} \quad \phi > 0 \] \hspace{1cm} (17)
52) Terminology: ϕ is called the boundary layer thickness.

53) Definition: For a second order plant, the width of the boundary layer is as $\varepsilon = \frac{\phi}{\lambda}$.

54) Smoothing inside the boundary layer can be achieved by using the sat function in place of the sgn function in the control law.

55) Remark: The sat function is equivalent to $\frac{S}{\phi}$ inside the boundary layer.

56) Perfect tracking cannot be guaranteed but steady state tracking error less than the boundary layer width can be achieved.