Sliding mode control



1) New title: Sliding mode control

2) Nonlinear control strategies based on sliding mode are used to deal with parameter
and model uncertainties.

3) In sliding mode control, a Lyapunov approach is used to keep the nonlinear system
under control.

4) In sliding mode control, a higher order system 1s transformed 1nto a lower order
system.

5) Reasons for modeling uncertainties:
- Actual uncertainty about the plant (unknown parameters)
- Simplified model design (purposeful simplification)

6) Types of modeling uncertainties:
- Structured (parametric)
- Unstructured (unmodeled dynamics, inaccuracy on the system order)



7) Robust control: An approach to deal with modeling uncertainties.

8) A robust controller 1s usually composed of a nominal part (a feedback controller)
and a corrective term (dealing with model uncertainty.)

9) Sliding mode control 1s a robust control strategy.
10) In sliding mode control a switching control law 1s used.

11) The switching law 1s used to drive the state trajectory onto a prespecified surface.

12) Terminology: This surface 1s called a switching surface, sliding surface or sliding
manifold.

13) In many cases this surface 1s a line (for second order SISO systems).

14) Ideally. once intercepted, the sliding surface becomes positively invariant for
system states. (System states slide along the sliding surface.)



15) Important task: Design of a switching control that will drive state trajectories to
the sliding surface. and keep them on the sliding surface.

16) This 1s done by a Lyapunov approach.

17) In sliding mode control, the Lyapunov function 1s defined in terms of the sliding
surface.



18) Consider the following single input nonlinear system:
x™ = f(X.0)+b(X.D)u(r) (1)

X (1) : State vector

u(t) : Control input

x : Output state of interest. (The other states in X are higher order derivatives of x
up to the order (n—1).)

f(X.1), b(X.1): Nonlinear functions.

19) f(X.1) is not exactly known. The imprecision of our knowledge on f(X.7) 1s
upper bounded by a known continuous function of X .

20) b(X.1)1s not exactly known. b(X.7) 1s of known sign. b(X,?) 1s upper and lower
bounded by known functions of X .

21) Control problem: We want that X tracks the time-varying state reference X, in
the presence of model imprecision on f(X.7) and b(X.1).



22) Detine the sliding variable s(f) as:
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A - Strictly positive constant
%(1) = (1) - x,(1)

x,(7) : Desired output state

23) The sliding surface S is defined by equating the sliding variable to 0 :
S = {f - s(t) = 0}

24) The system behavior on the sliding surface 1s called sliding mode or sliding
regime.

25) Remark: The tracking problem for the »-dimensional state vector 1s replaced by a
first-order stabilization problem for s(7).



26) Since A 1s positive, the error dynamics on the sliding line 1s Hurwitz and the
tracking error decays to zero with a speed dictated by A .

0=s(f) = (% + )5 (1)

27) Moving s to zero can be achieved 1f the control u 1s designed in such a way that

the following inequality holds:
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* dt
fast do they converge to the sliding surface?
29) Answer:
Suppose that the system state 1s not on the sliding surface.
Then s#0.
Suppose that s> 0.
d
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Now integrate both sides of this equation:
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[, State reaching time to the sliding surface.
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If we start by the assumption that s < 0. Then. a similar result will be obtained for the
reaching time:
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30) Remark: Starting from any initial state error, the state error trajectories reach the

sliding surface in a finite time less than

s(0) and then slide along the surface to the
n

origin exponentially with a time constant '



31) Question: How should the control u be designed in order to achieve
d
1
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32) Consider the following second order system:
¥() = f(X.t)+u(r)

33) Let f (X.r) be an estimate for f(X.7) with
(X0~ [(X.0)| < F(X.0).

34) Detine the sliding variable as
s(1) = ( ‘|‘/1]JC X+ A%

35) Difterentiate the sliding variable:
S =%—X, + A% .
= 5(t) = f(X.D)+u()— %, + % .
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36) Detine the appmmmatlon control law

Q) =-f(X.0)+5%, - (10)

37) u(t) 1s designed to achieve $(¢)=0.
(1) is the best estimate of “equivalent control”.

Equivalent control: Control for keeping s at a constant value.
This constant value 1s 0 on the sliding line.

38) Remember the target reaching regime:

%%(sz(r))g -n|s@)| n>0 (1)

39) In order to achieve this regime with the existing uncertainty on f(X.7). the
following control law is designed.

u(t) = u(t) - k(X.1)sgn(s(t)) (12)
k(X.)=F(X.t)+n



40) How does this design for u achieve %—( (r))< ry‘s(r)|

41) Answer:
d  , .

§— (5 () = 3(05(0)
= (f(X.0)+u(t) - ¥, + AX)s(t)
= (f(X.0)+d() - k(X.1)sgn(s(1)) - &, + Ax)s(0)
= (f(X.0)~ f(X.0)+ 5, — A k(X t)sgn(s(1) - &, + A%)s(t)  (13)
= (f(X.0)— f(X.1)—k(X.1)sgn(s(t)))s(?)
= (f(X.0)— F(X.0)s(8) — k(X.0)|s(?)
= (f(X.0) = F(X.0)s(t)— (F(X.0)+1)|s(0)] < —n|s(t)



42) Consider the following more general second order system:
(1) = f(X.0)+b(X.0u(t)
b(X.t) 1sbounded as: 0<b_ (X.1)<b(X.1)<b__(X.I)

43) In the control design we can use the geometric mean of the lower and upper
bounds can be used as the estimate for b(X.7):

b(X.t)= Jb. (X.0)b, (X.1)

<B.

44) Let S . Then the bound can be expressed as " < %

45) Question: How is that so? ~ Assume bmin =b then bmax = b
46) Answer: E /6 Do \/b \/bmﬂ‘“ — \/b \/bmﬂ Vbuss /P _
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47) Remark: The control law

u() = (6.0 () - k(X.1)sgn(s()] (15)
with
k(X.1) 2 B(X.0)(F(X.0)+1)+ (B(X.1) =D (?)] (16)

satisfies the sliding condition

g%(sﬁ(:))g —nls(t)| .



48) Remark: Ideal sliding mode requires infinite frequency switching. This 1s not
possible. Therefore zigzag behavior is observed about the sliding line.

49) Detinition: This behavior 1s called chattering.
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50) Remark: In many cases chattering has to be eliminated for proper plant operation.

51) Chattering can be eliminated by smoothing the control in a narrow boundary layer
around the sliding surface.

B ={x:|s(x.0)| <4} $>0 (17)




52) Terminology: ¢ is called the boundary layer thickness.
53) Detinition: For a second order plant, the width of the boundary layer1s as & = % :

54) Smoothing inside the boundary layer can be achieved by using the sat function in
place of the sgn function in the control law.
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55) Remark: The sat function is equivalent to 2 inside the boundary layer.

56) Perfect tracking cannot be guaranteed but steady state tracking error less than the
boundary layer width can be achieved.



