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Abstract—Wireless magnetic control of untethered mag-
netic devices (UMDs)—such as micro- and milli-robots—using
permanent-magnet robotic systems has the potential to change
minimally invasive surgery (MIS). These systems work by robot-
ically moving rotating permanent magnets (RPMs) enabling
control of UMDs in bodily fluids for targeted therapy. In this
thesis, a novel noninvasive magnetic localization and actuation
method is proposed and investigated theoretically, numerically
and experimentally. The proposed localization method determines
the position of UMDs (i.e., milli-rollers) in permanent magnetic
coupling using the detected magnetic torque on the RPM ac-
tuator. First, a Simulink model is created with the dynamics
of the system and an observer is designed to determine the
magnetic torque caused by the UMD’s motion with respect to
the RPM actuator. Then, the point dipole approximation of the
magnetic coupling and the kinematics of the permanent-magnet
robotic system are used to estimate the position of the UMD.
Then, the Simulink model of the dynamics of the system is
tuned and validated by experimental results. The results show
that the torque can be estimated successfully and agrees with
the theoretical model often used to describe a torque. A 12-mm
UMD was also successfully actuated and localized at a distance
ranging from 100 to 200 mm from the RPM both numerically
and experimentally, with mean average absolute position errors
of 3.4± 3.3 mm and 6.6± 4.5 mm. Finally, 1-D closed-loop
control was successfully implemented in the Simulink model.

I. INTRODUCTION

M INIMALLY invasive surgery requires fewer cuts, or
incisions than open surgery [1]. Compared to open

surgery, the use of MIS is associated with fewer postoperative
complications, shorter hospital stay and quicker recovery [1],
[2], [3]. This has resulted in an increase of MIS over the last
decades and a demand for new minimally invasive surgical
technologies [2], [4].

One promising MIS technology in development is mag-
netic microrobots. UMDs range in size from micrometers to
millimeters, allowing them to reach locations in the human
body that are otherwise only reachable using open surgery.
Untethered and wireless microrobots have the added benefit
that they can navigate through natural pathways within the
body without obstructing or damaging them and without the
need for incisions in some cases. Applications for surgical
microrobots include targeted drug delivery, material removal,
controllable micro-structures, and telemetry [5].

There are multiple types of microrobots, each differing in
type of power source, locomotion method and localization
method. Magnetic microrobots have the benefit that low-
intensity field strengths do not interact with human tissue,
making them a viable option for biomedical applications [6].
Externally powered magnetic microrobots rely on wireless
manipulation systems that include power, electronic, elec-
tromechianical and localization systems. This enables for a
simpler design of UMDs such as a helical wire connected
to a magnetic dipole, which can achieve locomotion through
rotation. Alternatively, locomotion can be achieved using a
tumbling or rolling motion. The design of the UMD depends
on the biomedical application.

The integration of wireless actuation of UMDs enabled
the integration of open-loop [7], [8], [9] and closed-loop
[10] position control during in vitro experiments. Due to the
fact that their localization method relies on visual feedback
to control the position of the UMDs, closed loop in vivo
applications are not possible with these methods, as body
tissues obstruct the microrobot and make localization therefore
impossible.

Thus, while the UMD can be simplified for externally
powered applications and has yielded promising results in
vitro, the wireless actuation and localization systems often
become too complex for in vivo applications. This complexity
is caused by the lack of integration of current noninvasive
medical imagining technologies. There are two approaches to
tackle this problem.

The first approach relies on additional features that can be
incorporated into existing imaging technologies. This approach
has yielded promising results using existing technologies such
as computed tomography [11], ultrasound [12] and photo-
acoustic [13]. Niedert et al. have implemented position control
of a tumbling micro-robot using ultrasound imaging both in
vitro and in vivo [14]. Drawbacks of ultrasound include a low
signal-to-noise ratio, artifacts that distort or shield the signal
due to strong wave reflectors such as bones or air pockets and
a low resolution [5]. Pane et al. have demonstrated feedback
control using a noninvasive localization strategy based on
ultrasound acoustic phase analysis inside a tissue-mimicking
phantom [15].

The second approach, relying on either on-board magnetic-
field sensors or additional sensors within the workspace [16],
has been implemented in multiple in vitro experiments. Popek
et al. have demonstrated in vitro simultaneous localization and
closed-loop position control of a UMD containing embedded
Hall-effect sensors using a single RPM as actuator [17]. This
method is limited to biomedical applications inside lumen
pathways with relatively large diameters, as UMDs with em-
bedded Hall-effect sensors are relatively large and are harder
to miniaturize than UMDs with external localization methods.
External arrays of magnetic field sensors (1D, 2D or 3D) have
been used to achieve actuation and localization of UMDs in
vitro [18], [19], [20]. A problem associated with Hall-effect
sensors is their saturation due to the actuation field, reducing
the localization performance.

In this thesis, a new noninvasive localization method for
UMDs is proposed and tested both numerically in Simulink
and experimentally. The proposed method relies on the es-
timation of the magnetic coupling between the UMD and
the actuator RPM. Through the pose, electric current, angular
velocity and angle of the RPM, the position of the UMD can
be estimated, allowing simultaneous actuation, localization and
control without the need of additional sensors. The influence of
multiple actuation and localization parameters (i.e. disturbance
observer gain g, gap width pz , actuation frequency Ωact and
the localization algorithm) on the localization performance are



investigated and optimized where possible through simulations
and experiments. The experiments and simulations are con-
ducted using a spherical milli-rollor for simplicity, but the
localization method is not constricted to other types of UMDs
that use magnetic torque as propulsion method, see figure 1.

The paper is organized as follows: Section II provides
the theoretical background in terms of magnetic forces and
torques for the magnetic coupling between the UMD and
the RPM, and provides the theoretical conditions for mag-
netic coupling. Then, using the differential equations for the
DC-motor that actuates the RPM, the equations describing
the disturbance torque observer are provided. Combining the
equations discussed theretofore gives the objective function for
localization. Finally, the equations of motion are provided to
create a Simulink model that combines the UMD dynamics,
RPM dynamics, magnetic coupling, disturbance observer, and
localization into a single model. In section III, the design of
the DOB is discussed and the experimental and numerical
results of the DOB are provided. In section IV, the Simulink
model is tuned for multiple actuation frequencies and gap
distances. Then, the localization performance is presented
both experimentally and using simulations. Section V provides
the results of a case of 1D closed-loop position control
using the proposed localization method. Practical limitations,
suggestions and other comments are provided in section VI.
A conclusion to the thesis is given in section VII.

II. THEORY

For the purpose of explaining the theory behind magnetic
coupling, both the RPM and the UMD (any micro-robot
consisting of a permanent magnet) are considered to be dipole
moments. This is accurate as long as the orientation of the
UMD and RPM are synchronized.

A. Permanent magnetic coupling interactions

Consider the dipole moments m ∈ R3 and M ∈ R3 for the
UMD and RPM respectively. Their positions are defined as
prob ∈ R3 and pact ∈ R3 with respect to a reference frame
{x,y, z}.

Defining p as the position of the UMD with respect to the
RPM gives p = prob−pact. The magnetic field at the position
of the UMD caused by the dipole moment M of the RPM can
be approximated with [21]

B (p,M) =
µ0

4π

(
3ppT

∥p∥5
− I

∥p∥3

)
M, (1)

where µ0 = 4π × 10−7 N.A−2 is the permeability of free
space. A similar equation can be constructed for the magnetic
field at any position caused by the dipole moment of the UMD.
When the UMD is in the vicinity of the RPM, it experiences
a magnetic force Fm = (m · ∇)B(p,M) [22], which can be
further expressed as

Fm =
3µ0

4π∥p∥4
(
MmT +mMT +

(
mTZM

)
I
)
p̂, (2)

where Z = I − 5p̂p̂T and p̂ is the normalized position.
Similarly, the UMD experiences a magnetic torque when in the

FIG. 1: A magnetic dipole of the rotating permanent mag-
net (RPM), represented by M̂, produces magnetic field
on a dipole moment m̂ of a nearby UMD. The field of the
RPM allows wireless locomotion of the UMD, while the
coupling between them enables localization. (a) The RPM
and the UMD rotate about the axes Ω̂act and ω̂rol (out
of the page), respectively. Location of the milli-roller and
the RPM are characterized by prob and pact with respect
to the reference frame {x,y, z}, respectively. (b) Other
types of magnetic torque-propulsed UMDs for which the
proposed localization method can be implemented.

vicinity of the RPM. The magnetic torque can be approximated
as [22]

Tm = m×B(p,M) (3)

Together, equation (2) and (3) describe the magnetic coupling
between the UMD and the RPM.

Magnetic coupling implies that dipole moments of the
UMD and RPM are aligned at all times with a phase lag ϕ
and is only possible when the RPM rotates with a rotational
velocity Ωact below the step-out frequency Ωc. The phase
lag and step-out frequency can be expressed respectively as
[23]

ϕ = sin−1

(
κηV Ωact

mB(p,M)

)
Ωc =

mB(p,M)

κηV
, (4)

where κ is the shape factor, which for a sphere is equal to 6,
η is the dynamic viscosity of the lumen, V is the volume of
the sphere, m is the magnetic dipole moment of the sphere
and B(p,M) is the magnetic field strength at the position p.
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From equations (2), (3) and (4) it can be concluded that
the magnetic force on the UMD scales with ∥p∥−4 and that
the magnetic torque and the step-out frequency both scale with
∥p∥−3. This allows the magnetic force to be neglected at larger
distances, as it decreases with one more order of magnitude
over distance than the magnetic torque.

B. Disturbance interaction and estimation

The RPM consists of a permanent magnet rigidly connected
to the DC-motor. This results in the magnetic torque expe-
rienced by the RPM being transferred to the DC-motor as
a disturbance torque, which results in a deviation in current
and rotational velocity. The differential equation of the RPM
subject to a disturbance torque Tdis in the mechanical domain
can be approximated as

(J1 + J2)
dΩ

dt
+BΩ = KtI(t)− Tdis, (5)

where J1 is the rotational inertia of the rotor, J2 is the rota-
tional inertia of the RPM, B is the viscous friction coefficient,
I(t) is the current and Kt is the motor constant. The motor
velocity is controlled in a closed feedback loop with a PI-
controller with the transfer function C (s). The differential
equation of the DC-motor in the electrical domain is

L
dI

dt
+RI(t) = V (t)− ε(t), (6)

where L is the inductance of the motor coil winding, R is the
resistance in the winding, V (t) is the supply voltage and ε(t)
is the electromotive force, which is equal to KtΩ.

Combining equation (5) with (6) and the closed-loop con-
troller gives the transfer function

Ω =
P(s)C(s)

1 + P(s)(C(s) +Kt)
Ωdes −

Pm(s)

1 + P(s)(C(s) +Kt)
Tdis,

(7)
where P(s) is the transfer function of the electrical and
the mechanical plant, Pm(s) is the transfer function of the
mechanical plant and Ωdes is the setpoint for the rotational
velocity of the motor. From (7) it can be concluded that the
disturbance torque directly influences the current through the
motor and the rotational velocity of the motor.

To estimate the disturbance torque, a disturbance observer
(DOB) was implemented. Its block diagram is shown in figure
2 and its equation is given with [24]

Test =
g

s+ g
(KtI(s) + JgΩ)− JgΩ, (8)

where g is the cut-off frequency of the DOB and J the
combined rotational inertia of the motor.

C. Localization using disturbance estimation

To estimate the position of the UMD, the estimated distur-
bance torque from equation (8) and the theoretical equation
for the magnetic torque from equation (3) are combined to
achieve the objective function

ϵ = min
p

{∥∥∥Test −
µ0

4π
M×D(p,m)

∥∥∥2} , (9)

FIG. 2: Block diagram of the disturbance observer (within
the shaded area) with current I and rotational velocity Ω
as input and estimated disturbance torque Test as output.

where Test is obtained using the pose q of the serial ma-
nipulator. The pose of the serial manipulator is assumed to
be known at all times, as it can be directly and accurately
controlled through RoboDK.

After the minimization of (9), the error between the local-
ized position p̂ and the actual position p can be further reduced
by taking the moving average (MVA) of the localized position.
The number of previous samples n used for the MVA filter
strongly influences the increased performance. The optimal
value for n is discussed in section III-A.

D. Dynamics of the UMD and implication in the numerical
model

The equations of motion for a spherical microrobot sub-
merged in viscous fluid on a flat surface can be characterized
in the low-Re regime using the following force and torque
balances [22]

Fm + Fc + Fd = 0, (10)

where Fm is the magnetic force as defined in equation (2),
Fc is the contact force due to friction between the roller and
the wall and Fd is the viscous drag force on the UMD. Fc

is the difference between the gravitational and buoyant force,
which can be expressed as

Fc = −µf

(
Mg − 4

3
πρgR3

)
v̂, (11)

where µf is the dynamic friction coefficient, M the mass of the
sphere, g the gravitational constant, ρ the density of the sphere,
R the radius of the sphere and v̂ the normalized velocity of
the sphere. The viscous drag force can be approximated as

Fd = 6πηR (ftv + frRΩ) , (12)

3



FIG. 3: Simplified block diagram of the model implemented in Simulink based on equations (1)-(15). Not every input is
shown for each block, but they can be derived from the equations.

where ft and fr are the normalized scalar near-wall fluid forces
in the translational and rotational domain respectively, and are
given by [25]

ft =
8

15
ln

(
δ

R

)
−0.959, fr =

−2

15
ln

(
δ

R

)
−0.253, (13)

where δ is the thickness of the liquid film between the wall
and the sphere. The torque balance is [22]

Tm +Td + (N× Fc) = 0, (14)

where Tm is the magnetic torque as defined in equation (3),
Td is the viscous drag torque and N is the unit vector normal
to the plane of motion. The viscous drag torque is given with

Td = 8πηR2 (Ttv + TrRΩ) (15)

where Tt and Tr and the normalized scalar near-wall fluid
forces in the translational and rotational domain respectively,
and are given by [25]

Tt =
−1

10
ln

(
δ

R

)
−0.189, Tr =

2

5
ln

(
δ

R

)
−0.3817. (16)

Combining the equations and transfer functions from this
section and section II-B, a model was created in Simulink.
A simplified version of the model is shown in figure 3. In
the Simulink model, the forces acting on the UMD from (10)
are neglected, as the resulting forces from the magnetic torque
are significantly larger during applications. A no-slip condition
was implemented in the simulation to describe the rolling
motion of the sphere, but this condition was tuned during the
validation of the model, see section IV-A.

III. TORQUE ESTIMATION

A. Disturbance observer and MVA design

To achieve an accurate estimation of Tm, an optimal value
for the observer cut-off frequency g is a requisite. A small
g results in little noise, which is desirable, but also increases
the phase lag significantly and results in an attenuated output
signal if the cut-off frequency is below the actuation frequency.
On the other hand, a large value for g passes more noise
through the filter but decreases the phase lag and attenuation.

Since any error between the estimated torque and Tm results
in a propagated error during localization, the optimal value for
g can be found through the minimization algorithm output.

The output of the minimization algorithm has a jittering
artifact—see figure 10—that increases the localization error.
A moving average filter reduces jittering in the output of the
minimization algorithm. The jittering artifact can be reduced
by using the smooth function provided by MATLAB. The
smooth function calculates the moving average at sample i
using the n previous samples. A large n will remove the
artifact entirely but attenuate the signal as well. A small n
removes less jittering but will attenuate less.

To find an optimal combination of g and n, the localization
error during the experiment shown in figure 7 was simulated
for a large number of combinations of g and n. The results
are shown in figure 4. The figure shows that in the region
n ∈ [90 : 4000] and g > 15 the localization error decreases
with at least 60%.

B. Magnetic torque estimation
The torque estimation was implemented both experimentally

and in the simulation. The experimental set-up used for the
experiment is shown in figure 5 and consists of a small section
of tube with a inner diameter of 15 mm filled with 1000cst
silicone oil and a spherical UMD with a diameter of 12 mm.
The UMD is constrained in all translational dimensions. The
RPM is mounted on a DC-motor and is the end-effector of a 6
degrees of freedom (DOF) serial manipulator. The pose of the
serial manipulator is such that the rotation axis of the RPM is
perpendicular to the tube.

During this set of experiments, the gap distance was de-
creased from 125 mm to 40 mm with a velocity vz of 1, 5, or
20 mm/s. For each velocity vz the RPM rotates at a rotational
velocity Ω of 0.2, 1, 2, or 4 Hz. Each experiment (i.e. 16 in
total) was repeated five times. The experimental set-up was
recreated in Simulink with the same boundary conditions and
simulated once for every combination of vz and Ω. A part of
the results are presented in figure 6. This figure shows a cubic
increase of the magnitude of the magnetic torque T̂m as the
gap decreases linearly over time, allowing the localization of
the UMD position on the basis of equation (3).
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FIG. 4: Localization error as a function of disturbance
observer cut-off frequency and moving average filter
span. The error is calculated as the mean error between
the localized position and the actual position during the
simulation of the experiment shown in figure 7. This was
done at a gap width of 100 mm and actuation frequency
of 2 Hz. The average sampling frequency is 494 Hz.

FIG. 5: Magnetic coupling estimation for various ro-
tational velocities |Ω| ∈ [0.2, 1, 2, 4] Hz of the RPM
and transnational speeds vz ∈ [1, 5, 10, 20] mm/s. Each
experiment starts with a gap width of 125 mm and ends
with a gap with of 40 mm. Each experiment was repeated
five times. The transnational velocity of the RPM is
controlled during the vertical motion towards the 12 mm
UMD while the position of the UMD is fully constrained.

IV. SIMULTANEOUS ACTUATION AND LOCALIZATION

In the previous experiment, the position of the UMD was
fully constrained, to show the performance of the disturbance
observer. In this section, the results of a different experiment
will be presented. This experiment implements both actuation
and localization. The UMD is constrained in two dimensions
and can now move in the dimension perpendicular to the
rotation axis of the RPM. The RPM is now fixed in all
dimensions. A longer tube was used and filled with the
same 1000cst silicone oil and the same spherical UMD. The

FIG. 6: Magnetic torque estimation as shown in figure
5. The rotational velocity |Ω| is 0.2 Hz. The UMD
is constrained in all translational dimensions while the
RPM moves vertically downwards for various speeds
vz ∈ [1, 5, 10, 20] mm/s. Each experiment was repeated
five times.

experimental set-up is shown in figure 7.
The RPM is actuated for 32 seconds at a rotational velocity

Ω. The sign of Ω is flipped at t = 8 s and t = 24 s, such that
the UMD is at the same position after the experiment as before
the experiment. This experiment was repeated for Ω = 0.5, 1,
2 and 4 Hz and for the multiple gap distances pz = 100, 120,
140, 160, 180 and 200 mm. Each experiment was repeated five
times. The experimental set-up was also recreated in Simulink
and simulated once for every combination of Ω and pz .

A. Simulink model validation

Firstly, the goal of the experiment is to tune the model in
Simulink. The model was created using the no-slip condition
as a model for the rolling motion of the sphere. This is
in most applications a valid assumption, as it reduces the
complexity of the model and is accurate for low velocities. To
determine whether this was a valid assumption, the average
mean translational velocity of the UMD v and the rotational
velocity of the RPM Ω was determined for each measurement,
resulting in table I. Assuming that the orientation of the UMD
is in sync with the orientation of the RPM allows Ω to be an
approximation of the rotational velocity of the UMD. Using
table I, the mean translational velocity at all distances pz was
fitted to the corresponding mean rotational velocity assuming
the relationship v = aΩ, where a is the fit parameter. A
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FIG. 7: Simultaneous actuation and localization for various rotational velocities |Ω| ∈ [0.5, 1, 2, 4] Hz of the RPM and gap
widths pz ∈ [100 : 20 : 200] mm. Each experiment was repeated five times. The position of the RPM is fully constrained
at all times. The direction of rotation is reversed at t = 8 s and at t = 24 s resulting in the UMD trajectory resembling
a single triangle wave, see figure 8.

no-slip condition would imply that a = R, where R is the
radius of the sphere. The value of a was found to be equal to
(1.76 ± 0.095) × 10−4 m, implying that the UMD is indeed
slipping.

TABLE I: Mean translational velocity v divided by the
mean rotational velocity Ω for every measurement.

|Ω| = 0.5 Hz |Ω| = 1 Hz |Ω| = 2 Hz

pz = 100 mm 2.27 · 10−4 2.23 · 10−4 1.91 · 10−4

pz = 120 mm 2.22 · 10−4 1.85 · 10−4 1.82 · 10−4

pz = 160 mm 1.41 · 10−4 1.72 · 10−4 1.76 · 10−4

pz = 180 mm 1.61 · 10−4 1.72 · 10−4 1.67 · 10−4

pz = 200 mm 1.26 · 10−4 1.67 · 10−4 1.14 · 10−4

Since the displacement of the UMD is approximately linear
at a constant rotational velocity of the RPM—see figure 8—
the no-slip condition in the model was changed to the relation
v = 0.0294 ∗ RΩ. This implementation reduces the displace-
ment of the UMD in the simulation, bringing the performance
of the model closer to the real world. In table II the mean
absolute difference between the simulated position and the
mean average error (MAE) of the experimental position are
provided for the experiments shown in figure 8. Taking the
mean of all experiments from table II gives a mean average
error of 1.48 ± 0.97 mm between the experimental and
simulated position.

TABLE II: Mean average error between the experimen-
tally tracked position (each repeated five times) and the
simulated position after tuning.

|Ω| = 0.5 Hz |Ω| = 1 Hz |Ω| = 2 Hz

pz = 100 mm 1.09 · 10−3 2.71 · 10−3 4.63 · 10−3

pz = 120 mm 2.11 · 10−3 9.52 · 10−4 2.08 · 10−3

pz = 160 mm 4.38 · 10−4 3.58 · 10−4 6.03 · 10−4

pz = 180 mm 5.51 · 10−4 1.22 · 10−4 3.36 · 10−4

pz = 200 mm 7.36 · 10−4 4.46 · 10−4 5.07 · 10−3

B. Localization performance

The second goal of the experiment shown in figure 7 is
to test the performance of the localization method for both
the simulation and the experiment. The same localization
algorithm was implemented for both the experimental results
and the simulated results using the built-in fmincon()

function in MATLAB. fmincon() can find the minimum or
maximum of a constrained nonlinear multi-variable objective
function. The objective function in this case is equation (9),
where px and pz are assumed to be given and constant.
The function requires an initial point p0 from which the
minimization starts, which in this case was chosen to be the
previously minimized location. The lower and upper bound
for the solution were implemented as p0 minus and plus a
small absolute distance δ respectively — it was assumed the
rolling motion of the UMD is continuous. No other constraints
were given to the function. The value of δ was tuned to
result in the smallest possible localization error. One sample
of the localization results of the simulated experiment are
shown in figure 10, the experimental localization results are
shown in figure 9. A summary of both the simulation and
experimental results is shown in figure 11 and 12 respectively.
The mean average error over all combinations of pz and
|Ω| of the simulation results in figure 11 is 3.4 ± 3.3 mm.
Respectively, the mean average error of the experimental
results is 6.6± 4.5 mm.

V. CLOSED-LOOP CONTROL IN SIMULINK

The next step after simultaneous actuation and localization
is the implementation of feedback control. For this experiment,
a PID-controller was implemented to control the position of
the UMD in one dimension similar to the actuation of the
experiment shown in figure 7. The experiment was conducted
only in Simulink and consisted of multiple step-responses for
the step heights pset ∈ [1, 5, 10] cm. Figure 13 provides the
results of the experiment after tuning the PID-controller. The
controller was able to follow the reference for pset = 1 and 5
cm using pset − p̂y as error.

VI. DISCUSSION

In figure 11, the datapoint of pz = 200 mm and |Ω| = 4
Hz is missing. This was done intentionally, since the UMD
is actuated above step-out frequency at this distance. This
resulted in the simulation not being able to localize correctly,
which gave a localization error several magnitudes larger than
the other datapoints. Therefore, considering this case was
above step-out frequency, it was left out.
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FIG. 8: Comparison of tuned model and experimental results for the experiment shown in figure 7. The UMD is allowed
to roll back-and-forth along the y-axis inside the tube. The position of the UMD is tracked to validate tuned model. The
RPM was actuated with the rotational velocities |Ω| ∈ [0.5 : 2] Hz at various gap widths pz ∈ [100 : 200] mm.

In section III-A, a moving average filter to reduce the
localization error was discussed. This filter was only imple-
mented for the simulated experiments. It was not implemented
in the physical experiments as the reduction of localization
error was negligible compared to the effect for the simulated
experiments. Figure 4 was created using a gap width of 100
mm and actuation frequency of 2 Hz. Other combinations can
result in different regions that decrease the localization error.

The closed-loop control was hand-tuned and does not per-
form optimally. There are two other problems with a PID-
controller that limit the performance of closed-loop control of
UMDs. The first problem is that there is no limit to the control
effort, resulting in actuation above step-out frequency if the
error is too large. Above step-out frequency the UMD does
not rotate in sync with the RPM, but it does provide a torque

to the RPM. This reduces the performance of the localization
method and can cause the system to diverge. This problem can
be partially solved by limiting the control effort below the step-
out frequency, but the step-out frequency is dependent on the
distance between the UMD and the RPM and can become an
unreliable limit if the localization error is too big. A solution
could be to control the pose of the robot such that p always
is small to ensure a large step-out frequency, which gives rise
to new challenges regarding safety and a limited workspace.

The localization method was implemented by minimizing
equation (9) for one component of p, i.e. py . As the UMD
was allowed to move in one dimension, this was an accurate
implementation. To implement this localization method in
vivo, the localization method must minimize equation (9) for
all components of p, i.e. px, py and pz . An attempt was
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made to implement a second component of p, i.e. pz , into the
localization method, but due to a increase in localization error
compared to one-component minimization, the localization
method was constricted to one-component minimization.

The model in figure 3 is based on the torque balance
and does not include forces. Figure 8 shows this is accurate
for relatively large gap widths, i.e. larger than 100 mm.
As the gap width decreases below 100 mm, the influence
of the magnetic force becomes increasingly larger and the
model will not be accurate anymore. This has no influence

on the localization process itself as the objective function in
equation (9) is independent on any force. However, a future
study into the effectiveness of this localization method for
smaller microrobots—with radii in the range of or smaller
than smaller than 1 mm—could result in smaller localization
errors if smaller gap widths can be implemented. Therefore,
the implementation of forces into the model are essential if
smaller UMDs are required.

A study into smaller UMDs would bring this localization
method closer to in vivo applications, as a 12 mm UMD is too

FIG. 9: Experimental results of the localization method for the experiment shown in figure 7. The UMD is allowed to
roll back and forth along the y-axis in the tube. The position of the UMD is tracked to validate the localization method.
The RPM was actuated with the rotational velocities |Ω| ∈ [1, 2, 4] Hz at various gap widths pz ∈ [120 : 20 : 200] mm.
The mean average localization error for all combinations of |Ω| and pz are shown in figure 12.
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FIG. 10: Localization error as a function of disturbance
observer cut-off frequency and moving average filter
span. The error is calculated as the error between the
localized position and the actual position during the simu-
lation of the experiment shown in figure 7. The simulated
gap width is 100 mm and the actuation frequency is 2
Hz. The average sampling frequency is 494 Hz.

big for in vivo applications. An attempt was made to create a
Simulink model that allows for the implementation of smaller
rollers for this thesis, but this attempt was unsuccessful. This
was caused by the fact that small UMDs have a small inertia,
which results in a very stiff system, which is inherently hard
to simulate as it requires very small time-steps—in the order
of or smaller than nanoseconds—or often does not converge.
That’s why for smaller UMDs a new model has to be created
that does not rely on inertia or mass. The construction and
validation of such a model was beyond the scope of this thesis.

VII. CONCLUSION

In this thesis, a basic physical framework necessary to
implement a noninvasive permanent magnetic coupling local-
ization method is presented that simultaneously actuates and
localized UMDs using a single RPM during 1-D motion in
confined environments. On the basis of a magnetic coupling
observer, it is shown numerically and experimentally that
the error between the actual and estimated torque can be
made arbitrarily small, allowing the position of the UMD
to be estimated using a quadratic least-squares problem.
The simultaneous open-loop actuation and localization of a
12-mm magnetic roller at a distance ranging from 100 to
200 mm from the RPM actuator results in an average error of
3.4±3.3 mm for the simulated model and a mean average error
of 6.6 ± 4.5 mm. The measurements show this localization
method allows for the implementation of 1-D closed-loop
position control of the UMD.
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